Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available June 15, 2026
- 
            High-Sr/Y granitoids in continental settings are sometimes erroneously regarded as the products derived from partial melting of thickened/delaminated mafic lower curst under relatively higher pressures (1.5 GPa) in a collisional orogenic setting. In fact, multiple magmatic processes in the trans-crustal magma system, such as recycling of antecrysts, crustal assimilation, and fractional crystallization, can create or modify the primary “adakitic” signature. As a result, the generation of adakitic magmas in continental settings remains controversial from a bulk-rock perspective. Here, we address the origin of adakitic plutonic rocks through geochemical and textural characterization of rock-forming minerals in the pyroxene-bearing Zhuyuan granodiorite, West Qinling, China. The Zhuyuan granodiorite formed in a post-collisional setting and primarily consists of resorbed orthopyroxene, three types of clinopyroxene, amphibole, two types of plagioclases, K-feldspar, biotite, and quartz. Type-1 Cpx has high XMg (70.0–81.7). Type-2 Cpx displays normal zoning and decreasing XMg (80.9 to 71.5) from the core to rim. Type-3 Cpx is reversely zoned, where the rims have higher XMg (75.5–86.9), Ni, Cr, suggesting a recharge event. Orthopyroxene has high-Ni and -Cr contents, as well as high XMg (80.9–82.8), indicative of antecrysts that grew in mafic magma reservoirs. The injection of magmas from different sources is supported by sieve-textured plagioclase and crystal size distributions of non-poikilitic amphibole. Finally, non-sieve textured plagioclase, biotite, K-feldspar, and quartz are late-crystallized phases, indicative of an orthocrystic origin. The melts in equilibrium with these orthocrysts display significantly higher Sr/Y values than the magma batches that crystallized other mafic phases (i.e., amphibole, clinopyroxene, and orthopyroxene). Thus, we propose that the system involved an initial high-Sr/Y melts in equilibrium with the orthocryst assemblage was generated by water-fluxed melting of intermediate to felsic sources. The addition of low Sr/Y non-orthocrysts (e.g., amphibole and pyroxene) and associated melt diluted the original “adakitic signal” in the magma reservoir and drove the bulk composition to more mafic values. Consequently, the Zhuyuan pyroxene-bearing granodiorite represents a mixture of crystals with diverse origins and distinct magma batches of various compositions (from felsic to mafic compositions). Our study emphasizes that the origin of adakitic granitoids cannot be clearly deciphered without geochemical analysis of the constituent minerals. We also suggest that Sr/Y values in plutons should be cautiously used in paleo-crustal thickness estimates in collisional settings because of possible open system scenarios as described here.more » « less
- 
            Abstract Optical computing with integrated photonics brings a pivotal paradigm shift to data-intensive computing technologies. However, the scaling of on-chip photonic architectures using spatially distributed schemes faces the challenge imposed by the fundamental limit of integration density. Synthetic dimensions of light offer the opportunity to extend the length of operand vectors within a single photonic component. Here, we show that large-scale, complex-valued matrix-vector multiplications on synthetic frequency lattices can be performed using an ultra-efficient, silicon-based nanophotonic cavity acousto-optic modulator. By harnessing the resonantly enhanced strong electro-optomechanical coupling, we achieve, in a single such modulator, the full-range phase-coherent frequency conversions across the entire synthetic lattice, which constitute a fully connected linear computing layer. Our demonstrations open up the route toward the experimental realizations of frequency-domain integrated optical computing systems simultaneously featuring very large-scale data processing and small device footprints.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available